主要思想
将
\(\hat{f}: \mathbf{p} \rightarrow\left(g^k \circ \phi \circ g^{k-1} \circ \cdots \circ \phi \circ g^1 \circ \gamma\right)(\mathbf{p})\)
改成
\(f: \mathbf{p} \rightarrow\left(h^k(\mathbf{p}) \circ \phi \circ h^{k-1}(\mathbf{p}) \circ \cdots \circ \phi \circ h^1(\mathbf{p}) \circ \gamma\right)(\mathbf{p})\)
也就是权重是和\(p\) 有关的,在这篇文章中,权重还是周期性的.
- 给\(N\)个 权重 \(\left\{\mathbf{W}_0^i, \ldots, \mathbf{W}_{N-1}^i\right\}\)
\(\mathbf{W}^i=\psi^i(\mathbf{p})=\psi^i(p)=\sum_{j=0}^{n-1} B_{j, N}\left(\alpha^i p+\beta^i\right) \mathbf{W}_j^i\)
\(\begin{aligned} &B_{j, N}^{\text {linear }}(q)=\max (0,1-|(q+1-j) \bmod N-1|) \\ &B_{j, N}^{\text {nearest }}(q)= \begin{cases}1 & \lfloor q\rfloor \bmod N=j \\ 0 & \text { otherwise. }\end{cases} \end{aligned}\)