Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

ISO-Point Generation

给了当前的SDF \(f_t(p;\theta_t)\),这个隐函数表示的曲面是\(\mathcal{S}_t\),ISO-points 是\(\mathcal{S}_t\) 上的一个稠密均匀分布的点集合,也就是说ISO-Points 是可以比较准确的表示这个曲面的. 也就是说, ISO-Points 是和当前的\(\mathcal{S}_t\) 相关的.
X2Vw8j

graph TD;
  A[Initial Points onto the zero level set]-- Projection -->B[A set of base iso-points];
  B--Uniform Resampling-->C[Resampled ISO-Points to avoid clusters of points and fill large holes];
  C--Upsampling-->D[Obtained Dense  and Uniformly distributed ISO-Points]

Projection

  • Input:

    • Initial Points : \(\mathcal{Q}_t\)
    • Current SDF \(f_t(x;\theta_t)\)
  • Output:

    • Base ISO-Points : \(\hat{q}_t\)
  • Method:

    • Newton's Method

For k=1:K:

  • $\mathbf{q}^{k+1}_t=\mathbf{q}^k_t-\tau\left(\frac{J_f^{\top}\left(\mathbf{q}^k_t\right)}{\left|J_f\left(\mathbf{q}^k_t\right)\right|^2} f\left(\mathbf{q}^k_t\right)\right)$
    • $\tau(\mathbf{v})=\frac{\mathbf{v}}{|\mathbf{v}|} \min \left(|\mathbf{v}|, \tau_0\right)$

At Each training iteration, \(K<=10\), when $|f(\mathbf{q}_t^k)|<\epsilon$, stop.(\(\epsilon=10^{-4}\downarrow 10^{-5}\) during training )

Uniform Resampling

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇