Signal Processing for Implicit Neural Representations

Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan Zhangyang Wang

NeurIPS 2022

GhCT4o.png

Implicit Representation Processing with Differential Operators

Suppose we already acquire an Implicit Neural Representation (INR) $\Phi: \mathbb{R}^m \rightarrow \mathbb{R}$, now we are interested in whether we can run a signal processing program on the implicitly represented signals.

  • One straightforward solution is to rasterize the implicit field with a 2D/3D lattice and run a typical kernel on the pixel/voxel grids.

However, this decoding strategy produces a finite resolution and discretizes signals, which is memory inefficient and unfriendly to modeling fine details.

Computational Paradigm

  • $\mathbf{\mathcal{A}}$ : Proposed signal processing operator;
  • $\mathbf{\Phi}$ : Input INR;
  • $\mathbf{\Psi}$ : Resultant INR processed by operator $\mathbf{\mathcal{A}}$ : $\Psi=\mathcal{A} \Phi: \mathbb{R}^m \rightarrow \mathbb{R}$

$$\Psi(\boldsymbol{x}):=\mathcal{A} \Phi(\boldsymbol{x})=\Pi\left(\Phi(\boldsymbol{x}), \nabla \Phi(\boldsymbol{x}), \nabla^2 \Phi(\boldsymbol{x}), \cdots, \nabla^k \Phi(\boldsymbol{x}), \cdots\right)$$

  • $\Pi$ : $\mathbb{R}\rightarrow \mathbb{R}$ : arbitary continuous function which can be either handcrafted or learned from data(MLP).
    • The input dimension of $\Pi$ depends on the highest order of used derivatives.

Trainable Parameters:

  • Only The parameters in fusion layer $\Pi$

Experiment

  1. Low-level Vision task
    1. Edge detection

      scyXR0.png

    2. Image Denoising

      JktQgN.png

    3. Image Blurring

      YKOUPp.png

    4. Image Deblurring

      T0liht.png

    5. Image Inpanting

      r6RemR.png

  2. Geometry Processing on SDF
    1. Smoothen

      V1vcx6.png

  3. High-level Vision task
    1. Classification on ImageNet

      7FeR5B.png

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇