Adversarial Multiclass Classification: A Risk Minimization Perspective

c8fnXb.png

Multiclass SVM generalizations

Multiclass SVM generalizations

multiclass support vector machine (SVM) seeks class-based potentials $f_y(\mathbf{x}_i)$ for each input vector $\mathbf{x}\in \mathcal{X}$ and class $y\in \mathcal{Y}$ so that the discriminant function $\hat{y}_f(\mathbf{x}_i)=\arg\max_{y} f_y(\mathbf{x}_i)$ minimize the misclassification errors, $loss_f(\mathbf{x}_i,y_i)=I(y_i\neq \hat{y}_f(\mathbf{x}_i))$

Multiclass SVM generalizations

Empirical Risk Minimization

$$\min_f\mathbb{E}_{(\mathbf{x},y)\in P_{data}(\mathbf{x},y)}[loss_f(x,y)]$$

for Zero-one loss is NP-hard

hinge loss approximation

In the binary setting, $y_i\in \{-1,+1\}$ where the potential of one class can be set to zero($f_{-1}=0$) with no loss in generality, the hinge loss is defined as $[1-y_if_{+1}(x_i)]_+$.

Multiclass SVM generalizations

Binary SVM

is an empirical risk minimizer using the hinge loss with $L_2$ regularization,

$$\min_{f_{\theta}}\mathbb{E}_{(\mathbf{x},y)\sim P_{data}(\mathbf{x},y)}[loss_{f_{\theta}}(\mathbf{x},y)]+\frac{\lambda}{2}||\theta||_2^2$$

Adversarial prediction games

Adversarial prediction games

The empirical training data is replaced by an adversarially chosen conditional label distribution $\check{P}(\check{y}|\mathbf{x})$ that must closely approximate the training data, but otherwise seeks to maximize expected loss, while an estimator player $\hat{P}(\hat{y}|\mathbf{x})$ seeks to minimize expected loss.

Adversarial prediction games

For the zero-one loss, the prediction game is $$\min_{\hat{P}}\max_{\check{P}:\mathbb{E}_{P(\mathbf{x})\check{P}(\check{y}|\mathbf{x})}[\phi(\mathbf{x},\check{y})]=\tilde{\phi}}\mathbb{E}_{\tilde{P}(\mathbf{x})\hat{P}(\hat{y}|\mathbf{x})\check{P}(\check{y}|\mathbf{x})}[I(\hat{y}\neq \check{y})]$$

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇